Steady advection–diffusion around finite absorbers in two-dimensional potential flows

نویسندگان

  • JAEHYUK CHOI
  • DIONISIOS MARGETIS
  • TODD M. SQUIRES
  • MARTIN Z. BAZANT
  • J. Choi
  • D. Margetis
  • T. M. Squires
  • M. Z. Bazant
چکیده

We consider perhaps the simplest non-trivial problem in advection–diffusion – a finite absorber of arbitrary cross-section in a steady two-dimensional potential flow of concentrated fluid. This problem has been studied extensively in the theory of solidification from a flowing melt, and it also arises in advection–diffusion-limited aggregation. In both cases, the fundamental object is the flux to a circular disk, obtained by conformal mapping from more complicated shapes. Here, we construct an accurate numerical solution by an efficient method that involves mapping to the interior of the disk and using a spectral method in polar coordinates. The method combines exact asymptotics and an adaptive mesh to handle boundary layers. Starting from a well-known integral equation in streamline coordinates, we also derive high-order asymptotic expansions for high and low Péclet numbers (Pe). Remarkably, the ‘high’Pe expansion remains accurate even for such low Pe as 10−3. The two expansions overlap well near Pe=0.1, allowing the construction of an analytical connection formula that is uniformly accurate for all Pe and angles on the disk with a maximum relative error of 1.75%. We also obtain an analytical formula for the Nusselt number (Nu) as a function of Pe with a maximum relative error of 0.53% for all possible geometries after conformal mapping. Considering the concentration disturbance around a disk, we find that the crossover from a diffusive cloud (at low Pe) to an advective wake (at high Pe) occurs at Pe≈ 60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can phoretic particles swim in two dimensions?

Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution ...

متن کامل

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

On Open Boundaries in the Finite Element Approximation of Two-dimensional Advection-diffusion Flows

A steady-state and transient finite element model has been developed to approximate, with simple triangular elements, the two-dimensional advection—diffusion equation for practical river surface flow simulations. Essentially, the space—time Crank—Nicolson—Galerkin formulation scheme was used to solve for a given conservative flow-field. Several kinds of point sources and boundary conditions, na...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005